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ABSTRACT 

Let j f . - i  denote the set of all ( n -  l)-dimensional linear subspaces of 
euclidean n-dimensional space E" (n > 3), and let J and K be two compact 
convex subsets of E". It is well-known that J and K are translation equivalent 
(or homothetic) if for all H E.r(" - l the respective orthogonal projections, say 
Jn, Kn, are translation equivalent (or homothetic). This fact gives rise to the 
following stability problem: If e > 0 is given, and if for every H ~.re'" - i a 
translate (or homothetic copy) of Ku is within Hausdortf distance e of J n, how 
close is J to a nearest translate (or homothetic copy) of K? In the case of 
translations it is shown that under the above assumptions there is always a 

translate of K within Hausdortf distance (1 + 2C'2)t of J. Similar results for 
homothetic transformations are proved and applications regarding the stabi- 
lity of characterizations of centrally symmetric sets and spheres are given. 
Furthermore, it is shown that these results hold even if o~g'"- i is replaced by a 
rather small (but explicitly specified) subset of ~e,-  i. 

I. Introduction 

Let  cg, deno t e  the  class o f  all n o n e m p t y  c o m p a c t  c o n v e x  subsets  o f  n -  

d imens iona l  euc l idean  space E" ,  a n d  o~¢f m the  class o f  all m - d i m e n s i o n a l  l inear  

subspaces  o f  E" .  F u r t h e r m o r e ,  i f K  E ~ " ,  H E ~¢f" - ~ let Kn d e n o t e  the  o r thogo-  

nal  p ro jec t ion  o f  K on to  H .  I f  n _>- 3 a n d  J ,  K E ~ "  it is we l l -known and  easily 

p r o v e d  (cf. Leichtweiss  [6, p. 241]) tha t  the  t r ans la t ion  equ iva lence  o f  Jn and  

Kn (for all H E JcF" - ~) impl ies  the  t rans la t ion  equ iva lence  o f J a n d  K.  I f d ( J ,  K)  

deno te s  the H a u s d o r f f  d is tance  a nd  i f  we define the translative distance 

be tween  J and  K by 
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(1) dr(J, K) = inf d(J, K + p), 
p ~ E  n 

then this fact can also be expressed by saying that dr(J, K) = 0 ifdt(Jn, Kn) = 0 
(for all H ~ o~ "-  ~). In this article we are concerned with the corresponding 

stability problem: If for some e > 0 and every H ~ ~ n - L  it is known that 

dt(Jn, Ku) <= e, what can be said about the size of dr(J, K)? Golubyatnikov [2] 

has announced that under the above assumption d,(J, K) < e. However, we 

give an example (at the end of the proof of Theorem 1) which shows that this 

inequality cannot hold for all J,  K ~  ~".  We are able to prove that d,(J, K) < 

(1 + 2v/2)e and that Golubyatnikov's claim is justified i f J  and K are centrally 

symmetric. These results are formulated in the following section as Theorem 1, 

and are used to establish several consequences regarding the stability of certain 
characterizations of centrally symmetric sets. 

We also investigate analogous problems for (positively) homothetic trans- 

formations. It is known that J a n d  Kmust  be homothetic if for every H E o~" - 

(n >= 3) the projections J ,  and K,  are homothetic (see [3], [5], [7] and the 

references cited in these articles). To obtain corresponding stability theorems 

one has to introduce suitable deviation measures. There are several possibili- 

ties but none of  these is as natural as dt in the case of translations. Definitions 

of  the measure to be used here are given in Section 3. Theorems 2 and 3 
contain our stability results based on these definitions. Several consequences 
regarding the case when one of the sets J,  K is a ball are formulated as a 

corollary. 
There is another aspect of our stability results that deserves mentioning. 

Already Hadwiger [5] has noted that J and K are homothetic i fJn and Kn are 
homothetic for all hyperplanes H belonging to some suitable subset of  ~ "  - 

The dimension of these subsets, as determined by the points on the unit sphere 

in E" corresponding to the orthogonal unit vectors of the hyperplanes, is n - 2. 

Our results show that actually certain one-dimensional sets (consisting of a 

great circle and two additional points) can be used for that purpose. 

2. Stability results concerning translations 

The m-dimensional linear subspaces of E n (i.e. the members of o~") will 

simply be called m-spaces, and whenever the term "projection" is used it 

means the orthogonal projection onto some (implicitly or explicitly specified) 

m- space. If H E o~" then H ± denotes the orthogonal complement of H. A set 

fa C .~n - ~ will be said to be full if UnE~ H" contains at least a 2-space, say F, 
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and a line orthogonal to F(i.e. a line contained in F±). In other words, (~ is full 
exactly if the set of  all orthogonal unit vectors of  the planes H E f~ determines 
on the unit sphere in E" a set that contains a great circle and two corresponding 
antipodal "poles". Because of its repeated appearance it is convenient to 

introduce a special symbol for the constant 1 + 2x,/2. We set 

(2) ,8 = 1 + 2v/2. 

Using these definitions we can now formulate our stability results concern- 

ing the translative distance dr. 

Tnr~ORISM 1. Let (~ be afullsubset o f ~ " -  ~ (n > 3) and J, K E ~ .  Ife > 0 

and i f for all H ~ (~ 

(3) dt(Jz, Kn) < 

then 

(4) at(J, K) < fie. 

The constant • in (4) cannot be replaced by 1, even i f  (~ = ~ -~; but i f  both J 
and K are centrally symmetric, then (3) implies 

(5) dt(J, K) < e. 

Before we give the proof  of this theorem we add several remarks and two 
corollaries. 

Although ,8 in (4) cannot be replaced by 1 it is unlikely that fl = 1 + 2v / ]  is 
best possible. To find the smallest constant tllat can serve in (4) appears to be a 
rather difficult problem. The content of Theorem 1 can also be formulated in 
terms of an inequality not involving e, namely as 

dr(J, K) _-<//sup 4(Jn ,  Kn), 

and the corresponding inequality for the centrally symmetric case (with fl 
removed). 

Repeated applications of Theorem 1 yields immediately the following 
corollary. 

COROLI.ARY 1. Assume that e > O, 2 £ k < n, and J, K E ~ .  I f  for all 
H ~ j ~  k 

dr(&, ___< e, 
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then 

dr(J, K) < fl"-*e, 

and i f  both J and K are centrally symmetric, then 

d~(J, K) < e. 

Obviously, a set K E ~" is centrally symmetric if and only if - K  is a 
translate of K. Thus, d,(K, - K) can be used as an indicator of the asymmetry 
of K. Perhaps a more satisfactory indicator of this kind is the functional 

(6) e(K) = dr(K, - K)/D(K), 

where D(K) denotes the diameter of K. This functional (which is defined only 
ifD(K) > 0) has the advantage of being invariant under similarity transforma- 
tions; see Griinbaum [4] for a comprehensive discussion of measures of 
symmetry. Theorem 1, together with the inequality D(Kn) < D(K), yields 
immediately the following stability result concerning central symmetry. K* 
denotes the set obtained from K by central symmetrization, i.e., K* = 
~(g + ( - K)). 

COROLLARY 2. 
and for all H E 

then 

Let fa be a full  subset o f  ~ "  - ~ (n > 3) and K E ~".  I f  e > 0 

d,(K.,  - K . )  <= ~, 

dr(K, - K )  < jSe, 

and i f  e(K) is defined by (6) and for all H ~ f~ 

e(KH) < e, 

then 

e(K) < p, .  

Furthermore, i f  every KH is within Hausdorff  distance e o f  some centrally 
symmetric convex set, then K is within distance 2pe o f  the centrally symmetric 

convex set K*. 

The last statement of this corollary can be deduced from Theorem 1 by the 
following argument: If for every H E  (a we let Z(H)  denote the centrally 
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symmetric set with d(Kn, Z(H)) < e, then act( - Kn, Z(H) < e and these two 

inequalities imply dt(K~, Z(H)) < e. Hence, 

dr(K*, Ku) < dt(K~, Z(H)) + dt(Kn, Z(H)) < 2e, 

and because of  Theorem 1 dr(K, K*) < fie. Here we have used the easily proved 

fact that act satisfies the triangle inequality, i.e. 

dr(A, C) -< dr(A, B) + dr(B, C) (A, B, C ~  ~"). 

As an immediate consequence of  Corollary 2 one obtains the known 

theorem that a set K ~ ~," (n > 3) is centrally symmetric if all its projections 

are (see [1, p. 125] and [6, p. 241]). Rogers [7] noted that this theorem is a 
consequence of the translation equivalence of  two convex sets whose projec- 

tions are translation equivalent. Corollary 2 shows that it is not necessary to 

use all projections but only those corresponding to a full subset of  Jr'" - ~. 

PROOF OF THEOREM 1. According to the definition of a full subset o f a g " -  l 

we may assume that ~ =  (# tO {G}, where G ~  "-~ and f~ consists of  all 

members of ~ " - ~  that contain a fixed (n -2) -space ,  say E, with G±C E. 

Setting L = G ~ and performing a suitable translation we may also assume that 

(7) d(Ja, K6) < e 

a n d  

(8) d(JL, KL) <= ~. 

There is a direction that determines supporting planes P(J) and P(K), of J and 

K (respectively) whose distance equals d(J, K). If T ~  ~ is a line orthogonal 

to P(J) (and therefore also to P(K)), then there is an H ~ ~ " -  i that contains 

both T and the (n - 2)-space E. Hence, H E f# c (#, and since P(J)H and 
P(K)n are parallel supporting planes of Jn and K~ we obtain 

(9) d(J, K) = d(Jn, Kn). 

Since H ~ f¢ we have dt(Ju, KH) < e, and it follows that there is a point p in E" 
such that 

(10) d(Jn, Kn + p) < e. 

If  we set Q = G N H and let Pe denote the image of p under the orthogonal 

projection of E" onto Q, then we obtain from (7) d(JQ, KQ) < e, and from (10) 
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d(JQ, K o + pQ) < e. Using the triangle inequality for the Hausdorff distance 

we can infer that d(KQ, KQ + pQ) ___< 2e. If we now use the fact that for every 

C ~  ff~ and x ~ E "  

(11) d(C, c + x)  -- II x II, 

where II x II denotes the euclidean norm of  x, we obtain 

(12) II po II --< 2e. 

Since L C H it is clear that (10) also implies d(J,~, Kz + Pz) < e. Hence the 

triangle inequality and (8) yield d(KL, Kz + Pz) < 2e and because of (11) we 

can deduce that 

(13) II PL II --< 2e. 

Since Q and L are orthogonal it follows from (12) and (13) that 

II p II --< 2v/Se. 

Hence, using (10), (11), and the fact that (9) implies 

dr(J, K) < d(JH, K,) < d(Jn, Kn + p) + d(Kn, Kn + p), 

we find dr(J, K) _-< e + 2v/2e, which is the desired result (4). 
I f J  and K are centrally symmetric one can perform a preliminary translation 

so that they have the origin o f E  ~, say o, as a common center. As before, let H 

be a member of fa such that (9) holds. Since .In and Ku have also o as center it 

follows that d(JH, Ku + x), considered as a function of  x, is minimal i fx  = o. 

Hence, d(Jn, Kn) = dt(Ju, Kn) < e, and (5) follows obviously from (9). 
To complete the proof of  Theorem 1 we have to show that for some n >_- 3 

and e > 0 there exist two sets J,  K E ~ such that 

(14) dr(J, K) > e. 

but for all H ~ ~,~:n - i 

(15) dMn, KH) _--< e. 

We take n = 3 and let K be the unit ball I[ x [[ < 1 in E 3 and J the (regular) 

tetrahedron inscribed in K. If M ~ ~n or M ~ ~n-1 we let h (M, . )  denote the 

support function of M. Simple elementary geometric considerations show that 

the outer normal units vectors, say ut, u2, u3, u4, of  the two-dimensional faces of  
J have the property that 



VoL 60, 1 9 8 7  PROJECTIONS OF CONVEX SETS 183 

(16) h(K, u,) - h(J, u,) = ] (i = 1, 2, 3, 4), 

and that for u ~ u~ 

(17) 0 <= h(K, u) - h(J, u) < ]. 

Hence, d(J, K) = 3, and since evidently d(J + x, K) > d(J, K) (for all x ~ E " )  
we have 

d,(J, K) = 3. 

If we now define e by e = sup{dt(Jn, Kn) : HEacg 2} we have only to show that 

e < 3. Because of obvious continuity and compactness properties it suffices to 

prove that for every H E gg2 

(18) 4 ( J . ,  gn)  < 3. 

To prove this let H be an arbitrary but fixed plane from ot °~. Since for all u ~ H 

h(J, u) = h(Jn, u) 

and 

h(K, u) = h(Kn, u) 

it follows from (16) and (17) that we may assume Ul E H and therefore 

(19) h ( K . ,  uO - h(2H, Ul) = 3. 

There are two possibilities; either u~ is the only ui with ui ~ H ,  or there is 
another u~ with this property. 

If u~ ~ H for i = 2, 3, 4, then Jn is a triangle with exactly one vertex, say p, on 

the circle bdr Kn (namely the vertex of .In opposite the side perpendicular to 
u0. Furthermore, if Vl and v2 are the outer normal unit vectors belonging to the 
two sides meeting at p then 

( 2 0 )  h ( K . ,  v3 - h( : , , ,  v,) < 3 (i = 1, 2). 

Because of  (19) and (20) and the fact that the two vertices different from p are 
not on bdr Kn one can find a ~ > 0 which is so small that the set J' = J + ~ul 
satisfies the inequalities 

h(KH, Ul) - -  h(Jttt, Ul) < 3 and h(Kn, vi) - h(Jh, v;) < 3 (i = 1, 2). 

Hence, d(J'n, Kn) < ] and this implies (18). 



184 H. GROEMER Isr. J. Math. 

If  the condition u~ E H holds not only for i = 1 we may assume u2 E H. In 

this case we have in addition to (19) 

(21) h(K., u2) - h ( J . ,  u2) = 

and Jz is an isosceles triangle with exactly two vertices say p, q, on the circle 

bdr Kz. If v is the outer normal unit vector belonging to the side of  Jz with 

endpoints p and q, then 

(22) h ( K . ,  v) - h ( J . ,  v) < ]. 

Thus, if t~ < 0 and if we define J '  = J + ~(u~ + u2), then, as a consequence 

of  (19), (21), and (22), ~ can be chosen so small that h(Kn, u~) - h(J'n, ui) < 
(i = 1, 2) and h(KH, v) - h(Jb, v) < ~. Hence, we find again d(J'n, Kz) < ~ and 

therefore (18). 

3. Stability results concerning homothetic transformations 

First we have to define suitable functions that measure the deviation of  two 

convex sets with respect to homothetic transformations. If  J ,  K ~ ~n one such 

measure is obtained by comparing J with 2K + p (2 >_- 0, p ~ E n) and choosing 

;t and p so that the Hausdorff distance of  the two sets is minimal. This leads 

immediately to a deviation measure, say m~, which can be defined by 

(23) m~(J, K) = inf dr(J, ;~K). 
2_>0 

Analogously one can define 

(24) m2(J, K) = inf dr(A J,  K). 
2 > 0  

Neither m~(J, K) nor m2(J, K) is symmetric in J a n d  K. To obtain a symmetric 

expression one can set 

(25) m(J, K) = max{m~(J, K), m2(J, K)}. 

m~(J, K) is invariant under homothetic transformations of  K, and m2(J, K) 
under homothetic transformations of J.  In some cases it is desirable to use 

deviation measures which are invariant under any pair of  homothetic transfor- 

mations that are applied, respectively, to J and K. If  we assume that the 

diameters of  J and K have the property that D(J) > 0 and D(K) > 0, then the 

following expressions have this invariance property: 
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(26) 

(27) 

(28) 

m~(J, K) = m,(J, K)/D(J), 

m2(J, K) = m2(J, K)/D(K), 

m(J, K) = max{mr(J, K), m2(J, K)}. 

Although it is possible to obtain stability results for arbitrary full subsets of  
.rg"-~ (see Theorem 3) we obtain more satisfactory estimates by considering 
special full subsets. I fK  E 4"  and L ~ ~¢~1 we say that the line L corresponds to 
the diameter of K if D(KL) = D(K). Furthermore, a subset (~ of  at ¢"- z will be 
called a full subset o f ~ "  -1 associated with K if there is a line L corresponding 
to the diameter of K with the following property: Either n > 3 and the set of 
those H ~ (~ that contain L is already a full subset of J¢~"-~, or n = 3 and (~ 
contains L l and all H E ocg 2 with L C H (and is therefore a full subset of  acg2). 

The distinction between the cases n > 3 and n = 3 is necessary since for n = 3 
there is no full subset of ocg 2 with all its planes containing a fixed line. 

THEOREM 2. Let m~, m2, m, m~, m2, m, and fl be defined by (23)-(28) and 
(2). I f  J, K ~  ~", e >--_ O, and f~ is a full subset of  al '~"-~ associated with K, then 
the condition 

(29) m,(Jn, gn) < e 

implies in the case n > 3 

(30) m,(J, K) < (1 + 

and in the case n = 3 

for all H E ~ 

~ - n - -  1))fie < ( 5  + 3¢:2)e 
n 

7 + 4v/3f l  (31) m~(J, K) < e. 
3 

I f  K is centrally symmetric the factors ( l + ~ / ( 2 ( n - l ) / n ) f l  and 

((7 + 4v~)/3)f l  can be replaced, respectively, by 2fl and 4//, and if  both J and K 
are centrally symmetric, by 2 and 4. 

Furthermore, i f  (~ is associated with J (instead of K) the analogous relations 

hold for m2 (instead of mO, and if (~ is associated with both J and K, then m~ can 
be replaced by m . Also, in all the above statements ml, m2, m can be replaced by 
m~, rh2, rn, respectively. 

Before we present the proof  of  this theorem we formulate another theorem 
and a corollary. The theorem concerns the situation when the given full subset 
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of  acg n- ~ is not necessarily associated with J or K. In this case we can still 

obtain stability results, but  we have to assume that the convex sets do not 

degenerate in the sense that the ratio o f  the circumradius to the inradius is 

bounded.  

THEOREM 3. Under the same assumptions as in Theorem 2, but with f# 
denoting an arbitrary full subset o f  gt TM -~, the condition (29) implies 

(32) m~(J,K) <= 1+ r(K p ' 

where R (K) denotes the circumradius and r(K) the inradius o f  K. I f  both J and K 

are centrally symmetric the factor fl can be omitted. 
Furthermore, all analogous relations with m~ replaced by m2 or m (and 

correspondingly R(K)/r(K) by R(J)lr(J) or max{R(J)lr(J), R(K)Ir(K)}) and 

the corresponding statements for m~. r~2, and m are true. 

As a noteworthy special case we consider a stability version of  the well- 

known theorem that a convex body is a ball if all its projections are. Let us 

assume that K ~ ~'" is arbitrary and J is a ball in E". I f  N is a full subset o f  

o~ n- ~ and if, for all H E ~,  m2(J,, Kn) < e, then one obtains from Theorem 2 

(if n > 3) and Theorem 3 (if n = 3) m2U, K) ~ 2fie and maU, K) ~ 3fie, 
respectively. This implies obviously R(K) - r(K) <= 4fie (n > 3) and R(K) - 
r(K) <= 6fie (n = 3). I f  we also note that from R(Kn) - r(Ku) ~ e there follows 

m2(Jx, K~) <= e we obtain immediately  the following 

COROLLARY 3. Let ~ be a full subset o f  a¢ ~"- t (n > 3), and let the set 
K ~ ~¢" have circumradius R (K) and inradius r(K). I f  an e > 0 is given and iffor 
every H ~ ( #  the projection Ku is within (HausdorfD distance e o f  an 
(n - 1)-dimensional ball then K is within distance 2fie ( i f  n > 3) and 3fie (iJ 
n = 3) of  a ball in E". Furthermore, i f  a K ~ ~" has the property that for all 
H E r #  

then 

and 

R(Ku) - r(Ku) < e, 

R(K) - r(K) < 4fie (n > 3) 

R(K) - r(K) < 6fie (n = 3). 
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In all these statements the factor fl = 1 + 2v/2 can be removed if  K is centrally 
symmetric. 

PROOF OF THEOREM 2. Because of mz(J,  K)  = m~(K, J) it is obvious that 

the statements regarding m2 and m follow from those concerning ml. Also, 

since for any H~a~e,-1 and C ~  ~" we have D(Cn)<= D(C) the statements 

regarding m~, m2, m follow immediately from the corresponding assertions 

about ram, m2, m. Thus, it suffices to prove only the statements involving m~. 
Let L ~ a~ t be a line corresponding to a diameter of  K, and let H E (~ be such 

that L c H. It is convenient to set 

Do = D(K). 

After applying a preliminary homothetic transformation to K we may assume 

that 

(33) D(JL) = Do. 

Because of (29) and H Ef¢ there is a 2 > 0 such that 

(34) dt(Jn, 2Kn) <-_ e. 

Let now Kh denote the translate of Kn whose circumsphere center is o, and let 

h(Kh, u) be the support function ofK~. Then we have 

dt(AK,, g , )  < d(ggh, gh) < sup I h(Agh, u) - h(gh, u)l 

< I A - I I sup h(Kh, u). 
u 

Using Jung's inequality (see [1, p. 78]) we find 

sup h(K~, u) = R(Kh ) <= ~ //rff 1 

u V 2 n  
D(K~), 

and therefore 

/ n -  1 o < ~ t n -  1 Do" 
(35) d,(2Ku, Kn) < IX - 11 2n D(K~) = 12 - 11 2n 

From (34), (35), and the triangle inequality one obtains 

dt(Jn, Kn) < dt(Jtt, ;tKn) + dt(AKn, Kn) _-< e + ~//~-~-nn - 1 12 - 1 I D0. 
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Since (34) and L c H imply 

dr(Jr., 2KL) < e, 

we obtain from (33) and the fact that D(2KL) = aDo 

I~. - 11Do < 2t. 

Thus, 

,36, ~° 
n 

If n > 3 the line L can be chosen so that the collection of  all H ~ @ with 

L c H is a full subset of  Jcf n - ~. Theorem 1 yields therefore 

\ y -  
which is the desired inequality (30). If K is centrally symmetric, then 

sup,, h(K~, u) = ½D(K~) and (35) can be replaced by 

dt(;~Kn, Kn) < [;~ - 11½Do. 

Following the same procedure as before this enables one to deduce 

dt(Jn, Kn) < 2t.  Using Theorem 1 we find therefore ml(J,  K) ~ 2fie or, i f J i s  
also centrally symmetric, rn~(J, K) <= 2e. 

In the case n = 3 the situation is slightly more complicated. We may assume 
that ~ = {L ±} t.; 3 ,  where f# = {H: H ~  2, L C H} and D(JL) = D ( K )  = 

Do. Then, (36) shows that for any H ~ f~ 

aM.,  K.) (1 + 2/v )e 
and this implies obviously that for any line Q c H 

(37) d,(J e, Ko) < (1 + 2/v/3)e. 

We note now that because of(29) there is a/~ _>-- 0 such that 

(38) d,(JL~, IZKL~) < e.. 

Taking Q - L l ¢3 H we have therefore 

(39) d,(Jo, ld(o) < e.. 

Using (37), (39), and the triangle inequality we find 
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(40) d,(gtK e, Ko) < 2(1 + l/v/3)e. 

Let K~, be the translate of  KL, that has o as circumsphere center. Then, using 
the same argument that lead to (35) we find 

1 
(41) d(#KZ~, K~) < I/~ - 11---~_ D(KZQ. 

x/3 

Since (40) implies 

I/l - I [D(KQ)_--< 4(I + I/v/3)e, 

and since Q can be any line in L ~ this shows that 

I/~ - 11D(K~ , )  < 4(1 + l / v / ~ ) e .  

From this inequality and (41) we obtain 

(42) d(uK~l, K~>) < ](1 + v~)e .  

Consequently, if (38) is combined with (42) we find 

dt( JL l, KL,) < dt( JLi, I.tKLi) + dt(I.tKt>, Kz+) < ~(7 + 4v/3)e. 

Using this and (36) we can state that for all G ~ 

d,(SG, KG) < t(7 + 4v'~)t .  

Hence Theorem 1 yields immediately the desired inequality (31). 
I f K  is centrally symmetric, then, as already remarked, (36) can be replaced 

by dt(Jn, KH) _--< 2e. This implies that (40) holds with the constant 3 instead of  
2(1 + l/v/3). Since it is also clear that in this case the factor l /v /3  in (41) can 
be replaced by ½ one obtains the coefficient 3 (instead of]( 1 + ~/3)) in (42), and 
this leads immediately to d,(Jc, Kc) < 4e for all G ~(a.  Thus, Theorem 1 
shows that m)(J, K) < 4fie, and that the factor fl can be omitted if J is also 
centrally symmetric. 

PROOF OF THEOREM 3. Again it suffices to consider only the deviation 
measure m~. As in the proof  of Theorem 1 we may suppose that G - $ tO {G} 
where G ~ acg"-~, and H E $ if and only if E C H where E is a fixed 
(n - 2)-space with G x c E. Also, in view of (29) we may assume that K has 
already been subjected to a preliminary homothetic transformation so that 

(43) d(J~, Ka) < t. 
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As another consequence of (29) we note that for every H ~ fq there is a 2 => 0 
such that 

(44) d,(Jn, ~Kn) < e. 

Thus, if U is a line in G (3 H we have d(Jv, Kv) <-_ t and 6(Jr,  2Kv) < e. An 
obvious application of the triangle inequality yields therefore 

d,(2Kv, Kv) < 2e. 
implies ID(XKv) - D(Kv)I -_< 4e, and since D(Kv) >= 2r(K) we Since this 

obtain 

(45) 12 - I I < 2e/r(K). 

Again, let Kh denote the translate of Kn with circumsphere center at o. Then, 

d,(2KH, KH) < d(2gh, gh ) <= sup I h(Agh, u) - h(gh, u)l 
u 

< 1 2 -  11 s u p h ( g h ,  u) < 1 2 -  l lR(gz).  
It  

Because of (45) this shows that 

d,(2Kn, Kn) <= 2 

Combining this with (44) we find 

R(K) 
r(K) 

R(K) 
d,(Jn, KM) <= d,(Ju, 2Ku) + d,(XKu, KM) <= e + 2 e. 

r(K) 
Theorem 3 is now an immediate consequence of this inequality, (43), and 
Theorem 1. 
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